(Ⅰ) Common molding processes in the composite materials industry
A) Autoclave Molding
The prepreg is placed in a heated autoclave, where the resin is cured under high pressure and high temperature. Autoclave molding can improve the fiber volume content and mechanical properties of composite materials, making it suitable for demanding applications such as aerospace and high-performance sports equipment.
B) Compression Molding
Preheated composite material is placed in a heated metal mold, which is then pressed to make the material closely adhere to the mold's inner surface. After curing, the part is removed from the mold. Compression molding is suitable for high-volume and complex-shaped parts manufacturing.
C) Resin Transfer Molding (RTM)
A fiber preform is placed in a closed mold, and a vacuum is applied inside the mold. The resin is transported from a container into the mold by pressure difference. The resin cures after filling the mold, and the molded part is removed. RTM achieves high fiber volume content and excellent surface quality, making it suitable for automotive, marine, and wind energy industries.
D) Hand Lay-up
Resin and fiber layers are manually stacked on a mold, suitable for simple parts and low-volume production.
E) Vacuum Bag
Molding Similar to hand lay-up, but a vacuum bag is placed over the composite material to increase fiber volume content and reduce air bubbles.
F) Pultrusion
Fiber bundles are continuously pulled through a resin bath and then shaped, suitable for large-scale production of linear parts.
G) Filament Winding
Resin-impregnated fibers are wound onto a rotating mandrel, suitable for cylindrical, conical, and spherical parts.
H) 3D Weaving
A three-dimensional fiber preform is produced using weaving techniques, enhancing the shear and impact resistance of composite materials.
I) Spray-up Molding
Short fibers and resin are sprayed onto a mold using a spray gun, suitable for large parts and complex geometries.
J) Injection Molding
Melted plastic and short fibers are injected into a high-temperature, high-pressure mold, suitable for high-volume and precision parts.
K) Prepreg Molding
Molding is performed using fiber fabric pre-impregnated with resin, suitable for high-performance and high-quality requirements.
(Ⅱ) Common components and types in composite materials
(1) Fiber types
A) Carbon Fiber
A high-strength, lightweight synthetic fiber made of microcrystalline graphite fibers, with excellent stiffness and fatigue resistance. Widely used in aerospace, sports equipment, automotive, and other fields.
B) Glass Fiber
A fiber made from silica-based materials, with relatively high strength and stiffness at a lower cost. Used in construction, piping, marine, and other fields.
C) Aramid Fiber (e.g.:Kevlar)
A synthetic fiber with high strength, high toughness, and good abrasion resistance, commonly used in applications such as bulletproof vests and cut-resistant gloves.
D) Basalt Fiber
A fiber made from basalt, with good heat resistance, corrosion resistance, and strength characteristics. Used in construction, roads, and bridges.
E) Graphite Fiber
A fiber made from high-purity graphite, with high thermal conductivity and strength, commonly used in high-temperature and conductive applications.
F) Prepreg
A semi-finished product made from fiber materials (such as carbon fiber, glass fiber, etc.) pre-impregnated with resin, which can be cured through heating and pressure.
G) Woven Fabric (eg:Plain Weave, Twill Weave, Satin Weave)
Refers to fabrics woven with different textures, possessing distinct appearances and performance characteristics.
H) Unidirectional Fabric
A fabric with fibers arranged in one direction, with high stiffness and strength, suitable for applications requiring specific directional strength.
I) Non-woven Fabric
A fabric formed by fixing fibers together through heat, chemical, or mechanical means, with good flexibility and breathability.
J) Short Fiber Reinforced Composite
A composite material with short fibers as the reinforcing phase, typically featuring good moldability and cost-effectiveness.
(2) Resin types
A) Epoxy Resin
A thermosetting resin with excellent adhesion, abrasion resistance, corrosion resistance, and electrical insulation. Commonly used in high-performance composites, coatings, and adhesives.
B) Unsaturated Polyester Resin (UPR)
A thermosetting resin with good flowability and relatively low cost. Widely used in glass fiber-reinforced plastic (GFRP) products.
C) Saturated Resin
Features higher heat resistance and weather resistance, commonly used for special applications such as high-temperature environments and outdoor exposure conditions.
D) UV-curable Resin
A photo-curing resin that can be rapidly cured by ultraviolet light exposure. Used in coatings, inks, and adhesives.
E) Polyester Resin
A thermosetting resin with good mechanical properties and water resistance. Commonly used in construction, marine, and piping applications.
F) Vinyl Ester Resin
A thermosetting resin situated between unsaturated polyester resin and epoxy resin. Vinyl ester resin exhibits superior mechanical properties, corrosion resistance, and fatigue resistance, commonly utilized in glass fiber reinforced plastics (GFRP) and carbon fiber reinforced plastics.
G) Phenol-formaldehyde Resin (PF resin)
A thermosetting resin with high heat resistance, chemical stability, and electrical insulation. Commonly used in electrical insulation materials, coatings, and adhesives.
H) Polyimide Resin
A high-performance thermosetting resin characterized by extremely high heat resistance and chemical stability, suitable for aerospace and other high-temperature environments.
(3)Foam Core Materials
a) Polyurethane Foam (PU Foam)
Exhibits excellent insulation properties, low density, and outstanding mechanical performance, widely applied in construction, transportation, and packaging industries.
b) Polystyrene Foam (PS Foam)
Also known as Styrofoam, features low density, low thermal conductivity, and excellent insulation properties, frequently used in building insulation materials.
c) Polyvinyl Alcohol Foam (PVA Foam)
Possesses good water resistance, oil resistance, and solvent resistance, commonly employed in water absorption and filtration applications.
d) Polyetheretherketone Foam (PEEK Foam)
A high-performance thermoplastic foam material with exceptional wear resistance, heat resistance, and chemical stability, suitable for high-performance composite materials.
e) Polymethacrylimide Foam (PMI Foam)
A high-performance closed-cell foam core material with extremely low density, excellent mechanical properties, and good thermal stability. PMI foam is widely used in aerospace, wind energy, and automotive industries for composite material manufacturing to reduce weight and enhance structural performance. Due to its high-performance features, PMI foam has a relatively high cost.
(Ⅲ) Physical Property Terminology for Composite Materials
1) Tensile Strength
The maximum tensile force that carbon fiber can withstand, measured in MPa or GPa. Tensile strength is an indicator of the strength performance of carbon fiber materials under force.
2) Modulus (Elastic Modulus)
The ability of carbon fiber to resist deformation under force, measured in GPa. The higher the modulus, the greater the stiffness of the material.
3) Elongation
The ratio of the maximum deformation of carbon fiber during stretching to its original length, expressed as a percentage (%). Elongation reflects the toughness of carbon fiber;the better the toughness, the higher the elongation.
4) Density
The ratio of carbon fiber mass to volume, measured in g/cm³. Density affects the mass, stiffness, and strength of carbon fiber.
5) Thermal Conductivity
The ability of carbon fiber to conduct heat over a unit of time, measured in W/(m·K). Thermal conductivity determines the performance of carbon fiber materials in high-temperature environments
6) Coefficient of Thermal Expansion
The ratio of the relative change in length of carbon fiber when temperature changes to the temperature change, measured in 1/℃. The coefficient of thermal expansion affects the dimensional stability of carbon fiber materials when temperature changes.
7) Flexural Strength
The maximum stress a material can withstand under bending loads.
8) Compressive Strength
The maximum stress a material can withstand under compressive loads.
9) Shear Strength
The maximum stress a material can withstand under shear loads.
10) Impact Strength
The ability of a material to resist damage under sudden impact loads, reflecting the material's toughness.
11) Interlaminar Shear Strength (ILSS)
An indicator used to measure the shear strength between layers in carbon fiber laminates. Carbon fiber laminates are typically formed by multiple layers of carbon fiber fabric impregnated with resin and compressed to solidify. Therefore, ILSS mainly focuses on the bonding strength between the layers in the laminate.
12) Yield Strength
The critical stress value at which a material transitions from elastic deformation to plastic deformation under the action of stress.
13) Fracture Toughness
Describes a material's ability to resist crack propagation, related to the material's toughness.
14) Fatigue Strength
The maximum stress a material can withstand under cyclic loads, related to fatigue life.
(Ⅳ) Chemical property terms of composite materials
A) Corrosion Resistance
The ability of a material to resist chemical corrosion, such as resistance to acids and alkalis.
B) Acid Resistance
The ability of a material to resist corrosion by acidic substances.
C) Alkali Resistance
The ability of a material to resist corrosion by alkaline substances.
D) Solvent Resistance
The ability of a material to resist the action of solvents.
E) Abrasion Resistance
The ability of a material to resist abrasion, scraping, and erosion, related to hardness and toughness.
F) Thermal Resistance
The ability of a material to maintain its performance under high-temperature conditions.
H) Oxidation Resistance
The ability of a material to resist oxidation, usually related to its anti-aging properties.
I) UV Resistance
The ability of a material to resist degradation and aging caused by ultraviolet radiation.
J) Moisture Resistance
The ability of a material to resist moisture corrosion and moisture absorption deformation.
(Ⅴ) Categories of quality testing
A) Tensile Test
Measures the tensile properties of a material under tensile loads, such as tensile strength, strain, and elastic modulus.
B) Flexural Test
Measures the flexural properties of a material under bending loads, such as flexural strength and flexural modulus.
C) Impact Test
Measures the impact resistance of a material under impact loads, such as impact strength and impact toughness.
D) Fatigue Test
Measures the fatigue resistance of a material under cyclic loads, such as fatigue strength and fatigue life.
E) UV Aging Test
Simulates the aging effect of ultraviolet radiation on materials, assessing their UV resistance.
F) Salt Spray Test
Simulates the corrosive effect of a salt spray climate on materials, assessing their corrosion resistance.
G) Thermal Cycling Test
Cycles a material between high and low temperatures to test its thermal resistance and thermal expansion properties.
H) Vibration Test
Simulates the performance of a material in a vibration environment, assessing its vibration resistance.
I) Wear Test
Measures the wear resistance of a material in a wear environment, related to hardness and toughness.
J) Humidity-Temperature Cycling Test
Cycles a material between high temperature and humidity and low temperature and humidity to test its moisture resistance.
K) Compression Test
Measures the compressive properties of a material under compressive loads, such as compressive strength and compressive modulus.
(一)复合材料行业常用的成型工艺
(1)热压罐成型(Autoclave Molding)
通过将预浸料放入加热的热压罐中,在高压和高温下固化树脂。热压罐成型可提高复合材料的纤维体积含量和力学性能,适用于航空航天和高性能运动器材等要求高的应用场景。
(2)模压成型(Compression Molding)
将预热的复合材料放入一个加热的金属模具中,然后用压力将其压紧,使其与模具的内表面紧密接触。固化后,零件从模具中取出。模压成型适用于高产量和复杂形状的零件制造。
(3)RTM工艺(Resin Transfer Molding)
将纤维预制体放入一个封闭的模具中,在模具内施加真空,通过压力差将树脂从一个容器输送到模具内。树脂充满模具后固化,然后从模具中取出成型零件。RTM工艺可实现较高的纤维体积含量和优异的表面质量,适用于汽车、船舶和风力发电等行业
(4)手糊工艺(Hand Lay-up)
手工将树脂和纤维布层叠在模具上,适用于简单的零件和低产量生产。
(5)真空吸附成型(Vacuum Bag Molding)
类似于手糊工艺,但在复合材料上覆盖一个真空袋,以提高纤维体积含量和减少空气泡沫。
(6)拉挤工艺(Pultrusion)
连续地将纤维束通过浸渍树脂槽并拉出成型,适用于线性零件的大规模生产。
(7)换向层叠成型(Filament Winding)
将含有树脂的纤维缠绕在旋转的芯模上,适用于圆柱形、圆锥形和球形零件。
(8)三维编织(3D Weaving)
通过编织技术制造出具有三维结构的纤维预制体,提高复合材料的抗剪和抗冲击性能。
(9)喷射成型(Spray-up Molding)
使用喷枪将短纤维和树脂喷射到模具上,适用于大型零件和复杂几何形状。
(10)注射成型(Injection Molding)
将熔融的塑料和短纤维注射到高温高压的模具中,适用于高产量和精密零件。
(11)预制成型(Prepreg Molding)
使用预先浸渍树脂的纤维布进行成型,适用于高性能和高质量要求的零件。
(二)复合材料中的常见成分和类型
(1)纤维类
1)碳纤维(Carbon Fiber)
一种由微晶石墨纤维组成的高强度、低重量的合成纤维,具有出色的刚度和耐疲劳性能。广泛应用于航空、运动器材、汽车等领域。
2)玻璃纤维(Glass Fiber)
以硅石材料为基础制成的纤维,具有较高的强度和刚度,成本相对较低。应用于建筑、管道、船舶等领域。
3)芳纶纤维(Aramid fiber)(例如Kevlar)
一种具有高强度、高韧性和良好耐磨性的合成纤维,常用于防弹衣、切割手套等应用。
4)玄武岩纤维(Basalt fiber)
以玄武岩为原料制成的纤维,具有良好的耐热、耐腐蚀和强度特性,应用于建筑、道路和桥梁等领域。
5)石墨纤维(Graphite fiber)
一种由高纯度石墨制成的纤维,具有高导热性和高强度,常用于高温和导电应用。
6)预浸布(prepreg)
纤维材料(如碳纤维、玻璃纤维等)预先浸入树脂中制成的半成品,可以通过加热和压力实现固化。
7)编织布(woven fabric)
指根据不同纹理编织而成的布料,具有不同的外观和性能特点,例如:平纹布、斜纹布、缎纹布。
8)单向布(unidirectional fabric)
纤维沿一个方向排列的布料,具有较高的刚度和强度,适用于需要特定方向强度的应用。
9)无纺布(non-woven fabric)
通过纤维之间的热、化学或机械作用固定而成的布料,具有良好的柔韧性和透气性。
(2)树脂类别
1)环氧树脂(Epoxy resin)
一种热固性树脂,具有优异的粘接性、耐磨性、耐腐蚀性和电气绝缘性。常用于高性能复合材料、涂料和粘合剂。
2)不饱和树脂(Unsaturated polyester resin, UPR)
一种热固性树脂,具有良好的流动性和较低的成本。广泛应用于玻璃纤维增强塑料(GFRP)制品。
3)饱和树脂(Saturated resin)
具有较高的耐热性和耐候性,常用于特殊应用,如高温环境和户外暴露条件。
4)UV树脂(UV-curable resin)
一种光固化树脂,可以通过紫外线照射快速固化。应用于涂料、油墨和粘合剂等。
5)聚酯树脂(Polyester resin)
一种热固性树脂,具有良好的机械性能和耐水性。常用于建筑、船舶和管道等领域。
6)乙烯基树脂(Vinyl ester resin)
一种热固性树脂,介于未饱和聚酯树脂和环氧树脂之间。乙烯基树脂具有较高的力学性能、耐腐蚀性和耐疲劳性,常用于玻璃纤维增强塑料 (GFRP) 和碳纤维增强塑料 (CFRP) 中。相较于未饱和聚酯树脂,乙烯基树脂具有更高的耐热性和化学稳定性。
7)酚醛树脂(Phenol-formaldehyde resin, PF resin)
一种热固性树脂,具有高耐热性、化学稳定性和电气绝缘性。常用于电气绝缘材料、涂料和胶黏剂等。
8)聚酰亚胺树脂 (Polyimide Resin)
一种高性能热固性树脂,具有极高的耐热性和化学稳定性,适用于航空航天等高温环境。
(三)泡沫芯材 (Foam Core Materials)
(1)聚氨酯泡沫 (Polyurethane Foam, PU Foam)
具有良好的绝热性能、低密度和优异的力学性能,广泛应用于建筑、运输和包装行业。
(2)聚苯乙烯泡沫 (Polystyrene Foam, PS Foam)
又称苯板,具有低密度、低导热系数和优良的保温隔热性能,常用于建筑保温材料。
(3)聚氨酯醇泡沫 (Polyvinyl Alcohol Foam, PVA Foam)
具有良好的耐水性、耐油性和耐溶剂性,常用于吸水、过滤等应用场合。
(4)聚醚醚酮泡沫 (Polyetheretherketone Foam, PEEK Foam)
一种高性能热塑性泡沫材料,具有极高的耐磨性、耐热性和化学稳定性,适用于高性能复合材料。
(5)PMI泡沫 (Polymethacrylimide Foam)
一种高性能闭孔泡沫芯材,具有极低的密度、优异的力学性能和良好的热稳定性。PMI泡沫常用于航空航天、风能和汽车等行业的复合材料制造,以减轻重量和提高结构性能。由于其高性能特点,PMI泡沫的成本相对较高。
(四)复合材料的物理性能名词
(1)抗拉强度 (Tensile Strength)
指碳纤维在受到拉力时所能承受的最大拉力,单位为MPa或GPa。抗拉强度是衡量碳纤维材料在受力时的强度表现。
(2)模量 (Modulus)
又称弹性模量 (Elastic Modulus),指碳纤维在受力时的抗变形能力,单位为GPa。模量越高,材料的刚度越好。
(3)延伸率 (Elongation)
指碳纤维在拉伸过程中发生的最大形变与其原始长度之比,单位为百分比(%)。延伸率反映了碳纤维的韧性,韧性越好,延伸率越高。
(4)密度 (Density)
指碳纤维的质量与体积之比,单位为g/cm³。密度影响了碳纤维的质量、刚度和强度。
(5)热导率 (Thermal Conductivity)
指碳纤维在单位时间内导热的能力,单位为W/(m·K)。热导率决定了碳纤维材料在高温环境下的性能表现。
(6)热膨胀系数 (Coefficient of Thermal Expansion)
指碳纤维在温度变化时,长度的相对变化率与温度变化量之比,单位为1/℃。热膨胀系数影响了碳纤维材料在温度变化时的尺寸稳定性。
(7)弯曲强度(flexural strength)
材料在受弯曲载荷时能承受的最大应力。
(8)压缩强度(compressive strength)
材料在受压缩载荷时能承受的最大应力。
(9)剪切强度(shear strength)
材料在受到剪切载荷时能承受的最大应力。
(10)冲击冲击强度(impact strength)
材料在受到突然冲击载荷时的抗破坏能力,反映材料的韧性。
(11)层间剪力(Interlaminar Shear Strength,简称ILSS)
是用于衡量碳纤维板材中各层之间剪切强度的指标。碳纤维板材通常由多层碳纤维布经树脂浸润并经压缩固化而成,因此,层间剪力主要关注板材中各层之间的粘结强度。
(12)屈服强度(yield strength)
材料在应力作用下由弹性形变过渡到塑性形变的临界应力值。
(13)断裂韧性(fracture toughness)
描述材料抵抗裂纹扩展的能力,与材料的韧性相关。
(14)疲劳强度(fatigue strength)
材料在循环载荷作用下能承受的最大应力,与疲劳寿命相关。
(五)复合材料的化学性能名词
(1)耐腐蚀性(corrosion resistance):材料抵抗化学腐蚀的能力,如抵抗酸、碱等侵蚀。
(2)耐酸性(acid resistance):材料抵抗酸性物质侵蚀的能力。
(3)耐碱性(alkali resistance):材料抵抗碱性物质侵蚀的能力。
(4)耐溶剂性(solvent resistance):材料抵抗溶剂作用的能力。
(5)耐磨性(abrasion resistance):材料抵抗磨擦、刮擦和冲刷的能力,与硬度和韧性相关。
(6)耐热性(thermal resistance):材料在高温条件下保持性能的能力。
(7)耐氧化性(oxidation resistance):材料抵抗氧化作用的能力,通常与抗老化性能相关。
(8)耐紫外线性(UV resistance):材料抵抗紫外线辐射引起的降解和老化的能力。
(9)耐湿气性(moisture resistance):材料抵抗湿气侵蚀和吸湿变形的能力。
(六)质量测试类别
(1)拉伸测试(Tensile test):测量材料在拉伸载荷下的抗拉性能,如拉伸强度、应变、弹性模量等。
(2)弯曲测试(Flexural test):测量材料在弯曲载荷下的抗弯性能,如弯曲强度、弯曲模量等。
(3)冲击测试(Impact test):测量材料在冲击载荷下的抗冲击性能,如冲击强度、冲击韧性等。
(4)疲劳测试(Fatigue test):测量材料在循环载荷下的抗疲劳性能,如疲劳强度、疲劳寿命等。
(5)紫外线老化测试(UV aging test):模拟紫外线辐射对材料的老化作用,评估材料的耐紫外线性能。
(6)盐雾测试(Salt spray test):模拟含盐雾气候对材料的腐蚀作用,评估材料的耐腐蚀性能。
(7)热循环测试(Thermal cycling test):将材料在高温和低温之间进行循环,测试材料的耐热性和热膨胀性能。
(8)振动测试(Vibration test):模拟材料在振动环境下的性能表现,评估材料的抗振动性能。
(9)磨损测试(Wear test):测量材料在磨损环境下的抗磨性能,与硬度和韧性相关。
(10)湿热循环测试(Humidity-temperature cycling test):将材料在高温高湿和低温低湿之间进行循环,测试材料的耐湿气性能。
(11)压缩测试(Compression test):测量材料在压缩载荷下的抗压性能,如压缩强度、压缩模量等。